
Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 8199

(http://iopscience.iop.org/0305-4470/34/40/301)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/40
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 8199–8220 PII: S0305-4470(01)25345-1

Occurrence of periodic Lamé functions at bifurcations
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Abstract
We investigate cascades of isochronous pitchfork bifurcations of straight-line
librating orbits in some two-dimensional Hamiltonian systems with mixed
phase space. We show that the new bifurcated orbits, which are responsible for
the onset of chaos, are given analytically by the periodic solutions of the Lamé
equation as classified in 1940 by Ince. In Hamiltonians with C2v symmetry,
they occur alternatingly as Lamé functions of period 2K and 4K, respectively,
where 4K is the period of the Jacobi elliptic function appearing in the Lamé
equation. We also show that the two pairs of orbits created at period-doubling
bifurcations of island-chain type are given by two different linear combinations
of algebraic Lamé functions with period 8K.

PACS numbers: 05.45.-a, 02.30.Gp

1. Introduction

One of the well-established routes to chaos in maps is the so-called Feigenbaum scenario [1]
which consists in a cascade of successive period-doubling bifurcations of pitchfork type. They
were first discussed for the one-dimensional logistic map by Feigenbaum [1] and then also
found in the area-conserving two-dimensional Hénon map [2, 3], although the numerical
scaling constants found there differ from those in the one-dimensional case. One of us
(MB) has recently investigated [4] similar cascades of pitchfork bifurcations occurring in two-
dimensional Hamiltonian systems with mixed dynamics, whereby the scaling constants can be
determined analytically and depend on the potential parameters. In the present paper, we shall
show that the new orbits born at its bifurcations are, near the bifurcations points, analytically
given by periodic solutions of a linear second-order differential equation studied over 160 years
ago by Lamé [5], and therefore called the ‘periodic Lamé functions’ [6]. They were classified
uniquely in 1940 by Ince [7] who also derived their Fourier series expansions [8]. We find
that these not only reproduce accurately the periodic orbits found numerically by solving the
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equations of motion at the bifurcations, but in the Hénon–Heiles (HH) [9] and similar potentials
the Lamé functions can also be used to describe the evolution of the bifurcated orbits at higher
energies. A particularly interesting case is the homogeneous quartic oscillator for which the
Lamé functions become finite polynomials in terms of Jacobi elliptic functions. Here we can
also find analytical expressions for the algebraic Lamé functions which describe the orbits
created at period-doubling bifurcations of island-chain type.

2. Bifurcations of a straight-line librating orbit

We start from an autonomous two-dimensional Hamiltonian of a particle with unit mass in a
smooth potential V (x, y)

H = 1
2

(
p2
x + p2

y

)
+ V (x, y). (1)

Assume that there exists a straight-line librating orbit, called A, along the y axis, so that

xA(t) ≡ 0 yA(t) = yA(t + TA) (2)

are solutions of the equations of motion and TA is the period of the A orbit. Its stability is
obtained from the stability matrix MA that describes the propagation of the linearized flow of
a small perturbation δx(t), δpx(t) = δẋ(t) transverse to the orbit A:(

δx (TA)

δpx (TA)

)
= MA

(
δx (0)
δpx (0)

)
. (3)

When −2 < tr MA < +2, the orbit is stable, for |tr MA| > 2 it is unstable. Marginally stable
orbits with tr MA = +2 occur in systems with continuous symmetries; in two dimensions this
would imply integrability. We investigate here only non-integrable systems in which all orbits
are isolated. Then, an orbit must undergo a bifurcation when tr MA = +2.

The elements of the stability matrix MA can be calculated from solutions of the linearized
equation of motion in the transverse x direction, which we write in the Newtonian form

δẍ(t) +
∂ 2V (x, y)

∂x2

∣∣∣∣
x=0,y=yA(t)

δx(t) = 0. (4)

This equation is identical to Hill’s equation [10] in its standard form [11]

δẍ(t) + [λ + Q(t)] δx(t) = 0 (5)

where Q(t) is a TA (or TA/2) periodic function whose constant Fourier component is zero.
In general, the solutions of (5) are non-periodic. However, periodic solutions with period TA

(or TA/2) and multiples thereof exist for specific discrete values of λ. This happens exactly
at bifurcations of the A orbit where tr MA = +2. The periodic solutions δx(t) found at
these discrete values of λ describe the x motion of the bifurcated orbits infinitely close to the
bifurcation point. A special case of the Hill equation is the Lamé equation which we discuss
in the following section.

3. The periodic Lamé functions

One of the standard forms of the Lamé equation reads [12]3

�′′(z) +
[
h − n(n + 1) k2 sn2(z, k)

]
�(z) = 0 (6)

3 Beware of the misprint in equation (13) and elsewhere in chapter 15.5.1 of this reference; the correct definition of
the variable ζ is that given in equation (8) of this paper.
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where sn(z, k) is a Jacobi elliptic function with modulus k limited by 0 � k < 1. The real
period of sn(z, k) in the variable z is 4K, where

K = K(k) = F
(π

2
, k

)
(7)

is the complete elliptic integral of the first kind with modulus k. We follow throughout this
paper the notation of Gradshteyn and Ryzhik [13] for elliptic functions and integrals. We are
interested here only in real solutions for �(z) with real argument z. Hence h and n(n + 1)
are assumed here to be arbitrary real constants. This means that n is either real, or complex
with real part − 1

2 . There is a vast literature on the periodic solutions of equation (6); for an
exhaustive presentation of their definition and series expansions as well as the most relevant
literature, we refer to Erdélyi et al [12] (see also [6] for literature prior to 1932). Ince [7,8] has
introduced a unique classification and nomenclature for the four types of periodic solutions,
calling them Ecmn (z) and Ecmn (z), where n is the parameter appearing in (6) and m an integer
giving the number of zeros in the interval 0 � z < 2K. Following a slight redefinition by
Erdélyi [14], the Ec(z) are even and the Es(z) are odd functions of z− K, respectively. When
m is an even integer, the Lamé functions have the period 2K in the variable z, which is the
same as the period of sn2(z, k) appearing in (6); when m is odd, they have the period 4K.
Solutions with period 2pK (p = 3, 4, . . .) can also be found; we shall discuss some solutions
with period 8K further below. All these periodic solutions exist only for discrete eigenvalues
of h, denoted by amn and bmn for the Ecmn and Esmn , respectively; there exists exactly one solution
of each of the above four types of Lamé functions for each m � 0. The eigenvalues of h can, in
principle, be found by solving the characteristic equation obtained from an infinite continued
fraction [7] which is, however, rather difficult to evaluate in the general case. In the context
of our paper, they are determined by bifurcations of a linear periodic orbit and we obtain them
therefore from a numerical calculation of its stability discriminant tr MA.

The Fourier expansions derived by Ince [8], with the modification by Erdélyi [14], are
given in terms of the variable

ζ = π

2
− am(z, k) (8)

where am(z, k) = arcsin[sn(z, k)], and read as follows:

Ec2m
n (z) = 1

2A0 +
∞∑
r=1

A2r cos(2rζ ) (period 2K) (9)

Ec2m+1
n (z) =

∞∑
r=0

A2r+1 cos[(2r + 1)ζ ] (period 4K) (10)

Es2m
n (z) =

∞∑
r=1

B2r sin(2rζ ) (period 2K) (11)

Es2m+1
n (z) =

∞∑
r=0

B2r+1 sin[(2r + 1)ζ ] (period 4K) (12)

with m = 0, 1, 2, . . . . The expansion coefficients can be calculated by two-step recurrence
relations; we give them here only for the A2r

[n(n + 1) − 2] k2A2 = [2h − k2n(n + 1)]A0 (13)

[n(n + 1) − (2r + 2)(2r + 1)] k2A2r+2 = 2
[
2h − k2n(n + 1) − 4r2(2 − k2)

]
A2r

− [n(n + 1) − (2r − 2)(2r − 1)] k2A2r−2 (14)

(with r = 1, 2, 3, . . .) and refer to ( [12], ch 15.5.1) for the other recurrence relations which
look very similar.
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Although the series (9)–(12) are known [8] to converge for k < 1, they turned out to be
semiconvergent in our numerical calculations for the cases with complex n, due to the fact
that the characteristic values of h were only determined approximately. We have truncated
the above series at the value rmax where the corresponding coefficient has its smallest absolute
value before starting to diverge. The cut-off values rmax were found to increase with the order
m of the Lamé function; their values are given in the tables 1 and 2 in sections 4 and 5,
respectively.

When n is an integer, the Fourier series terminate at finite values of r . The Lamé functions
then become [7] finite polynomials in the Jacobi elliptic functions sn(z), dn(z), and cn(z), and
are called the ‘Lamé polynomials’ in short. In section 6 we will encounter a special case of
the Lamé equation in which h and n are not independent, but where h = 1

2n(n + 1) along with
k2 = 1

2 . Then, to each integer n there exists only one value of m. Although the lowest few
polynomials of this type and their eigenvalues of h are included in the tables given by Ince [7],
we give below their explicit expressions which take a particularly simple form. The basic four
types of solutions correspond to the four rest classes modulo 4 of the integer n. With p = 0,
1, 2, 3, we obtain the following sums which are finite since the expansion coefficients become
identically zero for r > p:

Ec2p
4p(z) =

p∑
r=0

A4r cn4r (z) (period 2K) (15)

Ec2p+1
4p+1(z) = cn(z)

p∑
r=0

C4r cn4r (z) (period 4K) (16)

Es2p+1
4p+2(z) = dn(z) sn(z)

p∑
r=0

D4r cn4r (z) (period 4K) (17)

Es2p+2
4p+3(z) = cn(z) dn(z) sn(z)

p∑
r=0

B4r cn4r (z) (period 2K). (18)

The simple one-step recurrence relations for the coefficients are (with r = 0, 1, 2, . . . , p − 1)

(r + 1)(4r + 3) A4r+4 = −[p(4p + 1) − r(4r + 1)]A4r (19)

2(r + 1)(4r + 5) C4r+4 = −[(2p + 1)(4p + 1) − (2r + 1)(4r + 1)]C4r (20)

2(r + 1)(4r + 3)D4r+4 = −[(2p + 1)(4p + 3) − (2r + 1)(4r + 3)]D4r (21)

(r + 1)(4r + 5) B4r+4 = −[(p + 1)(4p + 3) − (r + 1)(4r + 3)]B4r . (22)

The first 16 Lamé polynomials obtained from the above equations are given explicitly in
section 6 (see table 3), with the normalization A0 = B0 = C0 = D0 = 1.

For half-integer values of n, one obtains periodic Lamé functions with period 8K that have
algebraic forms in the Jacobi elliptic integrals and are called ‘algebraic Lamé functions’ [8,15].
For the special case with k2 = 1

2 and h = 1
2n(n + 1) we will encounter them in section 6 at

period-doubling bifurcations of island-chain type. As shown in a beautiful paper by Ince [8],
there exist two linearly independent periodic solutions for n = 2p + 1

2 with p = 0, 1, 2, . . .

Ecm+1/2
2p+1/2(z) =

√
dn(z) + cn(z)

{ p∑
r=0

Ar sn2r (z) + cn(z) dn(z)
p−1∑
r=0

Br sn2r (z)

}
(23)

Esm+1/2
2p+1/2(z) =

√
dn(z) − cn(z)

{ p∑
r=0

Ar sn2r (z) − cn(z) dn(z)
p−1∑
r=0

Br sn2r (z)

}
(24)

where m is the number of zeros in the open interval (0, 2K); the coefficients Ar and Br are
given by two coupled recurrence relations. For k2 = 1

2 , h = 1
2n(n + 1) = 2p(p + 1) + 3

8 , there
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is only one solution with m = p for each p, and the recurrence relations read

2(2r + 2)2Ar+1 + [4p(p + 1) − 6r(2r + 1)]Ar − 4(p − r + 1)(p + r)Ar−1

= 2(2r + 2)Br+1 − 3(2r + 1)Br + 2rBr−1 (25)

(2r + 2)2Br+1 + [2p(p + 1) − 3(r + 1)(2r + 1)]Br − 2(p − r)(p + r + 1)Br−1

= (2r + 2)Ar+1. (26)

These relations hold for r � 0 provided that coefficients with negative indices r are taken
to be zero. It is quite easy to see that Br = Ar+1 = 0 for r � p, which justifies the upper
limits of the sums above. The coefficient A0 may be used for the overall normalization of both
functions.

The algebraic Lamé functions (23) and (24) are even and odd functions of z, respectively,
and related to each other by Ecm+1/2

2p+1/2(z + 2K) = Esm+1/2
2p+1/2(z), which amounts to a sign change

in front of cn(z). Erdélyi [15] showed that the linear combinations Ecm+1/2
2p+1/2(z) + Esm+1/2

2p+1/2(z)

and Ecm+1/2
2p+1/2(z) − Esm+1/2

2p+1/2(z) are even and odd functions of z−K, respectively, and proposed
that they be used instead of the functions (23), (24) introduced by Ince. However, as we shall
see in section 6, both pairs of independent functions are relevant in connection with period-
doubling bifurcations. The Lamé functions found for 0 � p � 3 are explicitly given in table 4
of section 6.

4. The Hénon–Heiles potential

We investigate here the role of the straight-line librating orbit A in the HH potential [9]. The
Hamiltonian reads in scaled coordinates

e = 6H = 6
[

1
2 (p

2
x + p2

y) + VHH(x, y)
]

VHH(x, y) = 1
2 (x

2 + y2) + x2y − 1
3 y

3 (27)

whereby the scaled energy is e = 1 at the saddle points. The Newton equations of motion are

ẍ + (1 + 2y) x = 0 (28)

ÿ + y − y2 + x2 = 0. (29)

These equations, and therefore the classical dynamics of the HH potential, depend only on
the scaled energy e as a single parameter. In our numerical investigations we have solved
equations (28), (29) and determined the periodic orbits by a Newton–Raphson iteration using
their stability matrix [16].

The basic periodic orbits with shortest periods found in the HH potential have been
discussed mathematically by Churchill et al [17]; an exhaustive numerical search and
classification has been performed by Davies et al [18]. We focus here on the straight-line A
orbit which exists along the three symmetry axes of the HH potential, one of which coincides
with the y axis. This orbit undergoes an infinite series of bifurcations which were studied in [4].
They form a geometric progression on the scaled energy axes e, cumulating at the critical energy
e = 1 where the period TA becomes infinity and the orbit A becomes non-compact. All the
orbits bifurcated from it exist, however, also at e > 1 and stay in a bounded region of the (x, y)
space. Vieira and Ozorio de Almeida [19] have investigated some of these orbits at e > 1, both
numerically and semi-analytically using Moser’s converging normal forms near a harmonic
saddle. In figure 1 we show the shapes of the orbits born at the isochronous bifurcations of
orbit A, i.e. of those orbits having the same period TA as orbit A at the bifurcation points.
The subscripts of their names Oσ indicate their Maslov indices σ needed in the context of the
semiclassical periodic orbit theory [20–22]. Although we make no use of the Maslov indices
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y
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Figure 1. Orbits bifurcated from the A orbit in the HH potential, evaluated at energy e = 1. The
subscripts give their Maslov indices σ . Dashed curves: rotations Rσ , solid curves: librations Lσ

(only one libration orbit is shown for each index; its partner is obtained by reflection at the vertical
symmetry line containing orbit A). Top panels: successive scaling of the x axis from left to right
with the factor 0.163. Bottom panels: successive scaling of both axes with the same factor; along
the y axis only the top part (starting from y = 1) is shown.

in the present paper, they are a convenient means of classification of the bifurcated orbits, as
will become evident from the systematics below.

All orbits shown in figure 1 are evaluated at the barrier energy e = 1. In the upper part
of the figure, the x axis has been zoomed by a factor 0.163 from each panel to the next, in
order to bring the shapes to the same scale. The orbits look practically identical in the lower
97% of their vertical range, but near the barrier (y = 1) they make one more oscillation in
the x direction with each generation. In the lower part of the figure, we have also zoomed in
on the y axis by the same factor from one panel to the next and plotted the top part of each
orbit, starting from y = 1. In these blown-up scales, the tips of the orbits exhibit a perfect
self-similarity which has been described by analytical scaling constants in [4].

In figure 2 we show the stability discriminant tr M for the orbit A (with its Maslov index
σ increasing by one unit at each bifurcation) and the orbits born at its isochronous bifurcations,
plotted versus scaled energy e. In the lowest panel, we see the uppermost 3% of the energy scale
available for the orbit A. The first bifurcation occurs at e5 = 0.969 309, where A5 becomes
unstable (with tr MA > 2) and the stable orbit R5 is born. At e6 = 0.986 709, orbit A6 becomes
stable again and a new unstable orbit L6 is born. In the middle panel, we have zoomed the
uppermost 3% of the previous energy scale. Here the behaviour of A repeats itself, with the
new orbits R7 and L8 born at the next two bifurcations. Zooming with the same factor to the top
panel, we see the birth of R9 and L10. This can be repeated ad infinitum: each new figure will
be a replica of the previous one, with all the Maslov indices increased by two units and with
tr MA oscillating forever. This fractal behaviour is characteristic of the ‘Feigenbaum route to
chaos’ [1–3], although the present system is different from the Hénon map in that the pitchfork
bifurcations seen in figure 2 are isochronous due to the reflection symmetry of the HH potential
around the lines on which the bifurcating orbit A is situated (see [23–25] for a discussion of
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Figure 2. Trace of stability matrix M of orbit A and the orbits born at successive pitchfork
bifurcations in the HH potential, plotted versus scaled energy e. From bottom to top: successively
zoomed energy scale near e = 1.

the non-generic nature of the bifurcations in potentials with discrete symmetries). Also, the
successive bifurcations happen here from one and the same orbit A, whereas in the standard
Feigenbaum scenario one studies repeated period doubling bifurcations.

Note that the functions tr M(e) of the bifurcated orbits in figure 2 are approximately linear
and intersect at e = 1 in two points, one for the librating orbits Lσ with tr ML(e = 1) = +8.183
(lying outside the figure), and one for the rotating orbits Rσ with tr MR(e = 1) = −4.183. We
shall derive this linear behaviour in the limit e → 1 from an asymptotic analytical evaluation
of tr MA in a forthcoming publication [26].

Presently we focus on the shapes of the orbits born at the bifurcations of A. Infinitely
close to the bifurcation points, their motion in the transverse x direction is given by periodic
solutions of the stability equation (5). Note that this equation is identical with the full equation
of motion (28) in the x direction, which happens to be linear for the HH potential. The function
yA(t) describing the A orbit can easily be found analytically [4] and is given, with the initial
condition yA(0) = y1, by

yA(t) = y1 + (y2 − y1) sn2(z, k) (30)



8206 M Brack et al

Table 1. Bifurcation energies eσ , e(σ of the A orbit in the HH potential, names Oσ of the bifurcated
orbits, Lamé functions of their motion xσ (t); cut-off order rmax of the Fourier expansion, and period
P of the Lamé functions. The constant a is given in (31). Right part: isochronous bifurcations;
left part: period-doubling bifurcations.

e(σ Oσ xσ (t) rmax P eσ Oσ xσ (t) rmax P

0.811 715 516 F9 Ec3
n(at) 13 4K 0.969 309 090 4 R5 Es4

n(at) 20 2K

0.915 214 692 F10 Es3
n(at) 12 4K 0.986 709 235 3 L6 Ec4

n(at) 26 2K

0.995 013 F13 Ec5
n(at) 25 4K 0.999 187 841 0 R7 Es6

n(at) 39 2K

0.997 849 05 F14 Es5
n(at) 30 4K 0.999 649 8 L8 Ec6

n(at) 40 2K

0.999 867 63 F17 Ec7
n(at) 53 4K 0.999 978 390 R9 Es8

n(at) 67 2K

0.999 942 92 F18 Es7
n(at) 62 4K 0.999 990 695 5 L10 Ec8

n(at) 104 2K

0.999 996 482 F21 Ec9
n(at) 123 4K 0.999 999 424 R11 Es10

n (at) 152 2K

0.999 998 483 F22 Es9
n(at) 162 4K 0.999 999 752 5 L12 Ec10

n (at) 211 2K

0.999 999 906 5 F25 Ec11
n (at) 290 4K 0.999 999 984 75 R13 Es12

n (at) 450 2K

0.999 999 959 3 F26 Es11
n (at) 276 4K 0.999 999 993 43 L14 Ec12

n (at) 517 2K

0.999 999 997 514 F29 Ec13
n (at) 765 4K 0.999 999 999 6046 R15 Es14

n (at) 757 2K

0.999 999 998 928 F30 Es13
n (at) 890 4K 0.999 999 999 8249 L16 Ec14

n (at) 1203 2K

where z is the scaled time variable

z =
√
(y3 − y1)/6 t = at (31)

and yi (i = 1, 2, 3) are the roots of the cubic equation e = 6VHH(x = 0, y) = 3 y2 − 2 y3. y1

and y2 are the turning points of the A orbit, whose period is

TA = 2
√

6/(y3 − y1)K = (2/a)K. (32)

The modulus of the elliptic integral is given by

k2 = (y2 − y1)/(y3 − y1) (33)

and tends to unity for e → 1 where y2 = y3. Rewriting equation (28) in terms of the scaled
time variable z, it becomes identical with the Lamé equation (6), with

h = 6 (1 + 2 y1)/(y3 − y1) n(n + 1) = −12 ⇔ n = −1/2 ± (i/2)
√

47. (34)

Note that h depends on the energy e. Hence, the discrete eigenvalues h = amn , b
m
n can

be directly related to the bifurcation energies eσ of the orbit A, and the corresponding Lamé
functions Ecmn (z) and Esmn (z) to the motion x(z) = x(at) of the new periodic orbits Oσ born
at the bifurcations. In table 1 we give the bifurcation energies eσ obtained from the numerical
computation of tr MA, the names Oσ of the bifurcated orbits, and the corresponding Lamé
functions with their periods in the variable z = at given in (31). We also give the values rmax

at which the Fourier series (9)–(12) have been truncated. The right part of the table contains
the lowest isochronous bifurcations seen in figure 2 and the bifurcated orbits shown in figure 1;
their Lamé functions all have the period 2K.

The left part of table 1 contains the lowest non-trivial period-doubling bifurcations (where
tr MA = −2), which are also of pitchfork type, and the names of the orbits born thereby.
Their Lamé functions have the period 4K. To avoid ambiguities, we denote their bifurcation
energies by e(σ . The period-doubling bifurcations of new orbits with the Maslov indices 11,
12, 15, 16, etc, are trivial in the sense that they just involve the second iterates of orbit A and
of the bifurcated orbits R5, L6, R7, L8, etc. The shapes of the first six non-trivial new orbits
born at these bifurcations are shown in figure 3; they have similar scaling properties as those
shown in figure 1.
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Figure 3. The periodic orbits born at the six lowest period-doubling bifurcations of orbit A in the
HH potential. The x axis has been scaled as in figure 1.

Mathematically speaking, the periodic solutions forxσ (t) in the form of the Lamé functions
exist only at the bifurcation energies eσ . However, the bifurcated orbits exist for all e � eσ . As
long as the amplitude of their x motion remains small, it must be given by the Lamé equation
(6) with the constants appearing in (34). But this equation has only periodic solutions when h

has an eigenvalue corresponding to a bifurcation energy eσ . Therefore, the bifurcated orbits
must keep their y motion ‘frozen’ at y(t) = yA(t) with the parameters corresponding to eσ .
Consequently, they also keep their periods at the bifurcation values. This has been confirmed
numerically, as noticed already in [4], to hold up to e = 1 and even beyond. Within the same
small-amplitude limit of the x motion, the energy of the y motion is frozen at its value eσ , and
the excess energy e− eσ is consumed to rescale the amplitude of x(t). In other words, we can
determine the normalization of the Lamé function xσ (t) of each bifurcated orbit by exploiting
the energy conservation. This is most easily done at the time t0 = TA/2 where y(t) has its
maximum value, i.e. y(t0) = y2, ẏ(t0) = 0, and around which we know the symmetry of the
Lamé functions. For the even functions Ecmn we have ẋσ (t0) = 0, and xσ (t0) is, with (27),
found to be

xσ (t0) =
√
(e − eσ )/3(1 + 2y2). (35)

For the odd functions Esmn we have xσ (t0) = 0, and their slopes at t0 are given by

ẋσ (t0) =
√
(e − eσ )/3. (36)

In this way we can not only normalize the Lamé functions near the bifurcation points, but also
predict their evolution at higher energies.

In figures 4–7 show some of the periodic orbits obtained numerically from solving the
equations of motion (28), (29) at e = 1 by solid curves, and compare them to those predicted
in the frozen-y-motion approximation, using y(t) = yA(t) (given at their bifurcation energies
eσ or e(σ ) and using for x(t) the Lamé functions according to table 1, scaled as explained
above. We see that in all cases, even for the lowest bifurcations, the new orbits keep their y
motion acquired at their bifurcation energies, up to e = 1, indeed: the two curves y(t) and
yA(t) can hardly be distinguished. As a consequence, we can expect the functions x(t) to be
well described by the appropriate Lamé functions. This is, indeed, the case if the latter are
correctly scaled. As we see, the normalization predicted by (35), (36) is the better, the closer
the bifurcation energy eσ comes to the saddle-point energy e = 1. A rigorous justification of
the frozen-y-motion approximation will be presented elsewhere [26].

We point out that all orbits born at the isochronous pitchfork bifurcations in the HH system
are given by Lamé functions with period 2K, since the orbit A is given by yA(t) (30) and hence
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Figure 4. Orbit R5 in the HH potential at e = 1. Left panels: y(t) and x(t) versus time t (in units
of 0.01); right panel: orbit in the (x, y) plane. Solid curves: numerical results obtained by solving
equations (28), (29). Dashed curves: y(t) given by yA(t) in (30) at the bifurcation energy e5, and
x(t) given by the Lamé function according to table 1, scaled as described in the text.
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Figure 5. Same as figure 4 for the orbit F9. Note that this orbit has twice the period of orbit A
at e(9 and is given by the Lamé function Ec3

n(at) with period 4K and m = 3 zeros in the interval
0 � at < 2K.

has the same period as the function appearing in the Lamé equation. The Lamé functions with
period 4K must therefore correspond to orbits born at period-doubling bifurcations (see table 1
and figure 5).
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Figure 6. Same as figure 4 for the orbit L8.
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Figure 7. Same as figure 4 for the orbit R13. Note that x(t) is harmonic over a long time while y

is close to the saddle (y � 1); the period of this harmonic oscillation is ω⊥ = 2π/
√

3, as shown
in [4] and also obtained from an asymptotic expansion of the Lamé functions [26].

Note also that according to bifurcation theory [23–25,27], two degenerate periodic orbits
should be born at each isochronous pitchfork bifurcation. The librating orbits Lσ come, indeed,
in pairs that are symmetric to the y axis, whereas the rotating orbits Rσ can be run through in
two opposite directions. Each of these pairs of orbits are, however, described by one and the
same Lamé function for x(t) which is invariant under the corresponding symmetry operation.
This is in agreement with a theorem, proved by Ince [8], that there cannot exist two linearly
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independent periodic solutions of the Lamé equation to the same characteristic value of h. An
exception of this theorem is given by transcendental and algebraic Lamé functions with integer
or half-integer values of n (see section 6 for an example).

We finally note that in the figures 4–7, the timescales are not always normalized such that
t = 0 corresponds to y(0) = y1, as assumed in equation (30), but obtained rather randomly due
to the way in which the periodic orbits where searched and found numerically. However, if we
shift the time origin to t ′ = 0 according to (30), all figures illustrate how the Lamé functions
Ecmn (z) are even and the Esmn (z) odd, according to their definition [7, 15], around t ′ = K/a

where y(t ′) has its maximum. This demonstrates that the association of Lamé functions to
bifurcated orbits allows one to understand (or predict) their symmetries.

5. The quartic Hénon–Heiles potential

We next investigate the quartic HH potential [28, 29] with the scaled Hamiltonian

e = 4H = 4
[

1
2 (p

2
x + p2

y) + VH4(x, y)
]

VH4(x, y) = 1
2 (x

2 + y2) − 1
4 (x

4 + y4) + 3
2 x

2y2

(37)

which is similar to the HH potential but has four saddles at the scaled energy e = 1; it
has reflection symmetry at both coordinate axes and both diagonals. It contains straight-line
librating orbits along all four symmetry lines; two of them, which we call again orbits A,
oscillate between the two saddles lying on the coordinate axes. To be specific, we choose
again the A orbit along the y axis. It has the same behaviour as the A orbit in the HH potential,
but it approaches a saddle at both ends. Its motion is, for yA(0) = 0, given by

yA(t) = y1 sn(at, k) a = y2/
√

2 k = y1/y2 (38)

and its period is

TA = 4
√

2K/y2 = 4K/a. (39)

Hereby ±y1 and ±y2 are the solutions of e = 4VH4(x = 0, y) = 2 y2 − y4, i.e.

y1 =
√

1 − √
1 − e y2 =

√
1 +

√
1 − e (40)

and ±y1 are the turning points of the orbit.
The linearized equation of motion in the x direction, which decides about the stability of

the orbit A, is for the H4 potential

ẍ(t) + [1 + 3y2(t)] x(t) = 0 (41)

neglecting here explicitly a term of order x3. Inserting the solution for yA(t) in (38) and
transforming to the scaled time variable z = at leads again to the Lamé equation (6) with

h = 2/y2
2 n(n + 1) = −6 ⇔ n = −1/2 ± (i/2)

√
23. (42)

Compared to the HH potential, we have now a new situation which is a consequence of the
higher symmetry of the H4 potential: the periodic function sn2(z, k) appearing in the stability
equation has half the period, namely 2K, of that of the orbit A itself (39). Therefore, all its
periodic solutions with period 2K, corresponding to Lamé functions with an even number
m of zeros, also have the period TA/2 at the bifurcations. The solutions involving the Lamé
functions with odd m share their periods 4K = aTA with that of the A orbit.

The systematics of the isochronous bifurcations of the A orbit for increasing bifurcation
energies eσ is given in table 2. The new orbits appear with m = 2, 3, 4, . . . , with alternatingly
odd and even Lamé functions. Like in the HH case, the Ecmn correspond to librations Lσ and
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Table 2. The same as in table 1, but only for the isochronous bifurcations of the A orbit in the
quartic HH (H4) potential. Note the alternating appearance of 2K and 4K periodic Lamé functions
with increasing bifurcation energy eσ . The constant a is given in equation (38). Orbits appearing
on the left side are stable up to e > 1, those on the right side are unstable at all energies.

eσ Oσ x(t) rmax P eσ Oσ x(t) rmax P

0.856 122 0 R5 Es2
n(at) 7 2K 0.896 713 9 L6 Ec2

n(at) 9 2K

0.984 176 5 L7 Ec3
n(at) 11 4K 0.988 912 8 R8 Es3

n(at) 12 4K

0.998 284 5 R9 Es4
n(at) 18 2K 0.998 800 4 L10 Ec4

n(at) 22 2K

0.999 814 0 L11 Ec5
n(at) 29 4K 0.999 869 95 R12 Es5

n(at) 32 4K

0.999 979 83 R13 Es6
n(at) 46 2K 0.999 985 90 L14 Ec6

n(at) 48 2K

0.999 997 812 L15 Ec7
n(at) 77 4K 0.999 998 4705 R16 Es7

n(at) 98 4K

0.999 999 7627 R17 Es8
n(at) 117 2K 0.999 999 8340 L18 Ec8

n(at) 134 2K

0.999 999 9742 L19 Ec9
n(at) 194 4K 0.999 999 9820 R20 Es9

n(at) 236 4K

0.85 0.875 0.9 0.925 0.95 0.975 1.0 1.025
e

-2

0

2

4

6

8

10

tr
M

A5

A6

A7 A7

A8

A9

L6 R8 L10 L’6

R5 L7 L7

Figure 8. Stability discriminant of the shortest orbits in the H4 potential, plotted versus scaled
energy e (cf table 2 for the bifurcation energies). L7 bifurcates at e ∼ 1.027 and becomes L′

6.

the Esmn to rotations Rσ . They appear alternatingly as 2K and 4K periodic functions. The
orbits given in the left part of the table are born stable and remain stable up to e > 1, whereas
those in the right part are unstable at all energies.

The non-trivial period-doubling bifurcations in this potential are of island-chain type, and
the orbits born thereby are given by Lamé functions of period 8K. We will not investigate
them here, but refer to the analogous situation in the quartic oscillator potential discussed in
section 6.

In figure 8 we show the stability discriminant tr M versus energy e for the orbit A and
the orbits born at its lowest isochronous bifurcations. Different from the HH potential, here
the functions tr M(e) of the bifurcated orbits are, to a good approximation, quadratic in e.
This can be derived analytically [26]. It is also striking that, different from figure 2, tr M of
all the orbits shown is always larger than or equal to −2. This behaviour, together with the
systematics seen in table 2, can be explained by the following arguments.
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Figure 9. Same as figure 4 for the orbit L14 in the H4 potential (cf table 2). Note that x(t) has half
the period of y(t).

Bearing in mind that the stability matrix of the second iterate O2 of a periodic orbit O is
just M2

O, where MO is that of the primitive orbit, one easily finds that its discriminant is

tr MO2 = tr M2
O = (tr MO)

2 − 2 (43)

which can never be less than −2. Hence, we can mathematically understand tr M of the orbit A
in figure 8 to be that of a second iterate. Its primitive is half of the orbit A, having the same period
as that of the function sn2 in the Lamé equation for its stability, and having a discriminant tr M

which oscillates around zero, exceeding the values +2 and −2 on both sides symmetrically,
like tr MA in the HH potential (figure 2). Their second iterates, which correspond to the full
bifurcated orbits, therefore have a discriminant tr M which is quadratic in e. These features,
together with the systematics in table 2, are all a consequence of the C4v symmetry of the H4
potential, including the reflection symmetry at the x axis that divides the A orbit (and all the
bifurcated orbits discussed here) into two equal halves. The quadratic behaviour of tr M of
the bifurcated orbits is also consistent with the fact that their next period-doubling bifurcations
(where tr M = −2) are symmetry breaking (see [25] for details).

Like in the HH case, the values of tr M of the bifurcated orbits intersect at two points
at e = 1, one with tr M(e = 1) = −1.711 for the orbits born stable, and one with
tr M(e = 1) = +9.991 for the orbits born unstable.

We thus obtain the result that Lamé functions with both periods 2K and 4K describe the
orbits born at isochronous bifurcations of the A orbit. Two examples are shown in figures 9
and 10, where the x motion of the orbits L14 and R16 is given by the functions Ec6

n(z) and
Es7

n(z), respectively. Whereas the latter shares its period with orbit A, the former has half its
period. Like before, these orbits are evaluated at the critical energy e = 1. The normalization
of the Lamé functions has been chosen as for the HH potential, using the frozen-y-motion
approximation and energy conservation, leading here to

xσ (t0) =
√
(e − eσ )/2(1 + 3y1) ẋσ (t0) =

√
(e − eσ )/2. (44)
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Figure 10. Same as figure 4 for the orbit R16 in the H4 potential (cf table 2).

6. The homogeneous quartic oscillator

We now turn to the quartic oscillator (Q4) potential

VQ4(x, y) = 1

4

(
x4 + y4

)
+
ε

2
x2y2 (45)

which has been the object of several classical and semiclassical studies [30]. Since it is
homogeneous in the coordinates, the Hamiltonian can be rescaled together with coordinates
and time such that its classical mechanics is independent of energy. Consequently, the system
parameter is here not the energy but the parameter ε. The potential (45) has the same symmetry
as the H4 potential (37) and, correspondingly, possesses periodic straight-line orbits along both
axes. The motion of the A orbit along the y axis is given by

yA(t) = y0 cn(y0t, k) y0 = (4E)1/4 k2 = 1/2 (46)

with the period TA = 4 K/y0. Its turning points are ±y0. Note that this solution does not
depend on the value of ε. The stability of the orbit A, however, does depend on ε. The
linearized equation of motion for the transverse x motion yields, after transformation to the
coordinate z = y0t , the Hill equation

x ′′(z) + ε [1 − sn2(z, k)] x(z) = 0. (47)

This is a special case of the Lamé equation with

h = ε = 1
2 n (n + 1) (48)

where we have used k2 = 1/2. The nice feature is that here we know analytically the
eigenvalues h = hn of the Lamé equation, namely those given in equation (48). This agrees
with the analytical result for the stability discriminant of the A orbit (46), which has been
derived long ago by Yoshida [31]4:

tr MA = 4 cos
[π

2

√
1 + 8ε

]
+ 2. (49)

4 Strictly speaking, Yoshida derived tr M for the half-orbit to be tr MA/2 = 2
√

2 cos[π
√

1 + 8ε/4], from which
equation (49) follows using equation (43).
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Table 3. Numbers n and parameter values εn for the isochronous bifurcations of the A orbit in the
homogeneous quartic oscillator (Q4) potential; names Oσ of bifurcated orbits; Lamé polynomials
for their x motion, and their periods P . The Jacobi elliptic functions sn, cn, and dn are given in
short notation as sn = sn(z, k), etc, with z = y0t , where y0 and the modulus k are given in (46).
(See the text for a special comment on orbits B3 and C4.)

n εn Oσ Lamé polynomial for x(t) P

0 0 L3 Ec0
0 = 1 2K

1 1 [B3] [Ec1
1 = cn] 4K

2 3 [C4] [Es1
2 = dn sn] 4K

3 6 R5 Es2
3 = cn dn sn 2K

4 10 L6 Ec2
4 = 1 − 5

3 cn4 2K

5 15 L7 Ec3
5 = cn

(
1 − 7

5 cn4
)

4K

6 21 R8 Es3
6 = dn sn (1 − 3 cn4) 4K

7 28 R9 Es4
7 = cn dn sn

(
1 − 11

5 cn4
)

2K

8 36 L10 Ec4
8 = 1 − 6 cn4 + 39

7 cn8 2K

9 45 L11 Ec5
9 = cn

(
1 − 22

5 cn4 + 11
3 cn8

)
4K

10 55 R12 Es5
10 = dn sn

(
1 − 26

3 cn4 + 221
21 cn8

)
4K

11 66 R13 Es6
11 = cn dn sn

(
1 − 6 cn4 + 19

3 cn8
)

2K

12 78 L14 Ec6
12 =

(
1 − 13 cn4 + 221

7 cn8 − 221
11 cn12

)
2K

13 91 L15 Ec7
13 = cn

(
1 − 9 cn4 + 19 cn8 − 437

39 cn12
)

4K

14 105 R16 Es7
14 = dn sn

(
1 − 17 cn4 + 51 cn8 − 425

11 cn12
)

4K

15 120 R17 Es8
15 = cn dn sn

(
1 − 57

5 cn4 + 437
15 cn8 − 1311

65 cn12
)

2K

It is easy to see that the bifurcation condition tr MA = +2 leads exactly to the values (48) of
the parameter ε.

The periodic solutions of the Lamé equation (47) at the bifurcation values of h = ε are
the Lamé polynomials discussed already in section 3. Their explicit forms for n = 0, 1, . . . ,
15 are given in table 3, using the short notation cn = cn(z, k), etc, and a normalization such
that their leading coefficient is unity. We also give in table 3 the names of the new-born orbits,
using the same nomenclature as for the H4 potential in the previous section. Their shapes are
shown in figure 11. They have exactly the same topologies as the orbits of the H4 potential
and are again described by Lamé functions of pairwise alternating periods 2K and 4K, as
seen also in table 3. Each of these orbits has a discrete degeneracy of 2, which is due to the
time reversal symmetry for the rotations and to the reflection symmetries about the coordinate
axes for the librations.

A special comment is due concerning the cases n = 1 and 2 which correspond to ε = 1 and
3, respectively. For these values of the parameter ε, the Q4 potential is integrable [30,31] and
no bifurcations occur for the shortest orbits. Nevertheless, the Lamé equation (47) possesses
mathematically the solutions Ec1

1 and Es1
2, respectively. The orbits B3 and C4 given in table 3

and figure 11 have topologically the shapes given by these Lamé polynomials, but it should
be emphasized that they are not generated through bifurcations but are generic orbits existing
at all values of ε. Under the symmetry operation ε −→ (3 − ε)/(1 + ε), which corresponds
to a rotation about 45 degrees and simultaneous stretching of the potential [30], the orbits
of type A are mapped onto the orbits of type B and vice versa, and the orbits of type C are
mapped onto themselves. This is seen easily in the Lamé polynomial describing the B orbit,
Ec1

1(z) = cn(z, k), which is proportional to the function (46) describing the A orbit.
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Figure 11. Shapes of orbits born at the isochronous bifurcations of orbit A in the Q4 potential.
Vertical direction: yA(t) given by (46); horizontal direction: x(t) given by the Lamé polynomials
listed in table 3 (with scaled normalizations to fit the shapes into the frames).

The scaling properties of these orbits and their evolution away from the bifurcation values
εσ are more difficult to analyse than in the HH and H4 potentials and will be discussed
elsewhere [32].

We now discuss period-doubling bifurcations of the A orbit in the Q4 potential. There is
a series of trivial period doublings which just involve the second iterates of the orbit A and
the orbits born at its isochronous bifurcations and listed in table 3. The non-trivial period
doublings occur when tr MA = −2, which leads with (49) to the critical values

ε = 2p (p + 1) + 3/8 p = 0, 1, 2, . . . . (50)

This is exactly one of the conditions [8] for the existence of period-8K solutions of (47),
namely that obtained by inserting n = (4p + 1)/2 into equation (48). The solutions are the
algebraic Lamé functions, given (up to p = 3) in table 4. These bifurcations are of the island-
chain type (see, e.g., [27]): the quantity tr M of the second iterate of orbit A—let us call it orbit
A2—touches the value +2, but the orbit A2 remains stable on either side. At the bifurcation,
two doubly-degenerate orbits are born, one stable and one unstable. The situation is illustrated
in figure 12 around the bifurcation at ε = 4 + 3/8 (p = 1). The unstable new orbit is here
called F10, and the stable new orbit is called P9. Their shapes, together with those born at the
other period doublings listed in table 4, are shown in figure 13. Their degenerate symmetry
partners are called F′

σ for the librating orbits (obtained by reflecting the Fσ orbits at the x axis)
and P′

σ for the rotating orbits (obtained by time reversal of the Pσ orbits).
According to the theory of Ince [8], the algebraic Lamé functions of period 8K are one

exceptional case where two independent periodic solutions can coexist for the same critical
value of h. These are the functions Ecp+1/2

2p+1/2 and Esp+1/2
2p+1/2 defined in equations (23), (24). As

we see from table 4, they correspond to the unstable orbits of type Fσ and F′
σ . In contrast to

the degenerate pairs of bifurcated orbits in the HH and H4 potentials, which are represented by
one and the same periodic Lamé function, the pairs Fσ and F′

σ are here given by two linearly
independent functions. With this, however, the number of independent solutions of the second-
order differential equation (47) is exhausted. Therefore the other pair of stable orbits of type
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Table 4. Numbers n and parameter values εn of the four lowest non-trivial period-doubling
bifurcations of the A orbit in the homogeneous quartic oscillator. Given are also the names Oσ

of the four topologically different orbits born simultaneously at these bifurcations, and the (linear
combinations of) algebraic Lamé functions with period 8K that describe their x motion. (The
same short notation for the Jacobi elliptic functions sn, dn and cn is used as in table 3.)

n εn Oσ algebraic Lamé function for x(t)

1
2

3
8 F6 Ec1/2

1/2 =
√

dn + cn

F′
6 Es1/2

1/2 =√
dn − cn

P7
√

dn + cn +
√

dn − cn

P′
7

√
dn + cn − √

dn − cn

5
2 4 3

8 F10 Ec3/2
5/2 =√

dn + cn
(

1 − 4
7 sn2 − 8

7 dn cn
)

F′
10 Es3/2

5/2 =√
dn − cn

(
1 − 4

7 sn2 + 8
7 dn cn

)
P9 Ec3/2

5/2 + Es3/2
5/2

P′
9 Ec3/2

5/2 − Es3/2
5/2

9
2 12 3

8 F14 Ec5/2
9/2 =

√
dn + cn

(
1 − 36

13 sn2 + 16
13 sn4 − 8

13 dn cn
)

F′
14 Es5/2

9/2 =√
dn − cn

(
1 − 36

13 sn2 + 16
13 sn4 + 8

13 dn cn
)

P13 Ec5/2
9/2 + Es5/2

9/2

P′
13 Ec5/2

9/2 − Es5/2
9/2

13
2 24 3

8 F18 Ec7/2
13/2 = √

dn + cn
[
1 − 1304

347 sn2 + 1200
347 sn4 − 320

347 sn6 + 272
347 dn cn

(
1 − 40

17 cn4
)]

F′
18 Es7/2

13/2 = √
dn − cn

[
1 − 1304

347 sn2 + 1200
347 sn4 − 320

347 sn6 − 272
347 dn cn

(
1 − 40

17 cn4
)]

P17 Ec7/2
13/2 + Es7/2

13/2

P′
17 Ec7/2

13/2 − Es7/2
13/2
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Figure 12. Stability discriminant tr M of period-2 orbits in the Q4 potential around a period-
doubling bifurcation of island-chain type at ε = 4.375. A2 is the second iterate of the primitive
orbit A5 (shown by a dashed curve); its Maslov index increases from 9 to 11 at the bifurcation. F10
and P9 are the genuine period-2 orbits bifurcating from it; each has a discrete degeneracy of two
(see text and table 4); P9 bifurcates at ε � 5.3 and becomes P8.
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P7 F6 P9 F’10 P13 F14 P17 F’18

Figure 13. Same as figure 11, but for orbits born at period-doubling bifurcations of orbit A in the
Q4 potential. The motion x(t) is given by the algebraic Lamé functions listed in table 4.

Pσ and P′
σ born at the period doublings cannot be given by any new independent solutions.

Indeed, we see from table 4 that the orbits Pσ and P′
σ are given by the two independent linear

combinations Ecp+1/2
2p+1/2 ± Esp+1/2

2p+1/2 which were constructed by Erdélyi [15] to have the same
symmetry properties as those of the 2K and 4K periodic Lamé functions, as discussed in
section 3.

We thus have found the interesting result—which was new to us—that the stable and
unstable pairs of orbits born at a period-doubling bifurcation of island-chain type are mutually
linear combinations of each other. It follows from our above arguments that this result must
hold for all Hamiltonians with the double reflection symmetry C2v .

In figure 14 we illustrate the situation for the four orbits born at the bifurcation at
ε = 12 + 3/8 (p = 2). In the left panels, their shapes x(y) are shown; in the right panels we
plot the algebraic Lamé functions (and their linear combinations) which describe the motion
x(t) of the respective orbits. Looking merely at the shapes of these orbits, the pairwise linear
dependence of their x motion is not obvious at all.

7. Summary and conclusions

We have investigated cascades of isochronous pitchfork bifurcations of straight-line librational
orbits in two-dimensional potentials. The linearized equation of the x motion transverse to
these orbits, determining their stability, can be written in the form of the Lamé equation.
Its eigenvalues correspond to the bifurcation values of the system parameter, given also
by the condition tr M = +2 for the stability discriminant of the straight-line orbit, and
its eigenfunctions describe the x motion of the new orbits born at the bifurcations. These
eigenfunctions are the periodic Lamé functions of period 2K or 4K, where K is the complete
elliptic integral determining the period of the parent orbit at the corresponding bifurcation. In
potentials with C2v symmetry, the solutions occur alternatingly as Lamé functions of period
2K and 4K, respectively. When this symmetry is absent, the 4K periodic solutions describe
the orbits born at period-doubling pitchfork bifurcations.

We have shown numerically that the periodic Lamé functions describe very accurately
the shapes of the bifurcated orbits obtained from a numerical integration of the equations of
motion, as long as the amplitude of their x motion remains small, i.e. as long as one is not too
far from the bifurcation point. Exploiting the energy conservation in the HH type potentials
HH and H4 and the known symmetries of the Lamé functions, we can predict the propagation
of the new orbits up to the critical saddle-point energy where they have all become unstable
and the system is highly chaotic. We thus have found an analytical description of an infinite
series of unstable periodic orbits in chaotic systems.



8218 M Brack et al

-1.0 -0.5 0.0 0.5 1.0
y

-0.15

0.0

0.15
orbit P’13

0 400 800 1200 1600
t [x 100]

Ec9/2
5/2

(at) - Es9/2
5/2

(at)

-0.15

0.0

0.15
orbit P13 Ec9/2

5/2
(at) + Es9/2

5/2
(at)

-0.1

0.0

0.1

0.2
orbit F14 Ec9/2

5/2
(at)

-0.1

0.0

0.1

0.2
orbit F’14 Es9/2

5/2
(at)

x

x

x

x

Figure 14. The four orbits born at the period-doubling bifurcation at ε = 12.375. Left: their
shapes in the (x, y) plane; right: algebraic Lamé functions describing their motion x(t).

In the homogeneous quartic oscillator (Q4) potential, the series expansions of the periodic
Lamé functions terminate and they become finite polynomials. In this potential we have also
analysed solutions of period 8K which occur at period-doubling bifurcations of the straight-
line orbits of island-chain type. The two pairs of orbits born thereby are represented by
two independent sets of orthogonal periodic solutions of the Lamé equation, which here are
identified with the so-called algebraic Lamé functions that can again be given in a closed form.

Similar cascades of pitchfork bifurcations have also been discussed in connection
with the diamagnetic Kepler problem represented by hydrogen atoms in strong magnetic
fields [24,33,34]. Expressing the Hamiltonian in (scaled) semiparabolic coordinates (u, v), the
effective potential for orbits with angular momentum Lz = 0 (where the z axis is the direction
of the external magnetic field) becomes similar to the H4 and Q4 potentials discussed here
(although it contains only quadratic and sixth-order terms in the coordinates). Since physically
the (u, v) coordinates are positive definite, the periodic orbits in the diamagnetic Kepler
problem correspond to the half-orbits of the H4 and the Q4 potentials. There exist straight-line
librating orbits, corresponding to oscillations of the electron along the symmetry axis, which
bifurcate infinitely many times as the energy of the electron approaches the ionization threshold.
The stability of these linear orbits is given by the Mathieu equation, which is analogous to the



Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems 8219

Lamé equation (6) but with the function sn2(z, k) replaced by cos(2z). Its periodic solutions
are the periodic Mathieu functions sem and cem which have properties completely analogous
to those of the periodic Lamé functions, and were actually studied in detail by Ince [35] prior
to his investigations of the Lamé functions. The topology of the Mathieu functions and of
the bifurcated orbits described by them is exactly the same as for the Q4 and H4 potentials
described here. In particular, the so-called ‘balloon’ orbits Bn and ‘snake’ orbits Sn with
n = 1, 2, . . . [24] correspond exactly to the alternating sequence of halves of the orbits R5, R9,
. . . and L7, L11, . . . shown in figure 11. (The other orbits, born unstable at the bifurcations,
were not considered in [24] since they do not pass through the centre.) We believe that our
analysis, applied in terms of the Mathieu functions, may be useful for further investigations of
the bifurcations occurring in the diamagnetic Kepler problem.

The knowledge of the analytical properties of the bifurcated orbits will be useful in the
application of the periodic orbit theory to the potentials studied here. First steps in this direction
have been quite successful [28, 29, 36], but the orbits bifurcated from the A orbit were not
considered. Their incorporation into the semiclassical trace formula is the object of further
work in progress. We expect the bifurcated orbits, in particular, to play an important role in
the semiclassical analysis of resonances above the barriers in HH type or similar potentials.
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